

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Architecture of SHARE/Trove

This document is a starting point and reference to familiarize yourself with this codebase.

Bird’s eye view

In short, SHARE/Trove takes metadata records (in any supported input format),
ingests them, and makes them available in any supported output format.

 ┌───┐
 │ Ingest │
 │ ┌──────┐ │
 │ ┌─────────────────────────┐ ┌──►Format├─┼────┐
 │ │ Normalize │ │ └──────┘ │ │
 │ │ │ │ │ ▼
┌───────┐ │ │ ┌─────────┐ ┌────────┐ │ │ ┌──────┐ │ save as
│Harvest├─┬─┼─┼─►Transform├──►Regulate├─┼─┬─┼──►Format├─┼─┬─►FormattedMetadataRecord
└───────┘ │ │ │ └─────────┘ └────────┘ │ │ │ └──────┘ │ │
 │ │ │ │ │ . │ │ ┌───────┐
 │ │ └─────────────────────────┘ │ . │ └──►Indexer│
 │ │ │ . │ └───────┘
 │ └─────────────────────────────┼─────────────┘ some formats also
 │ │ indexed separately
 ▼ ▼
 save as save as
 RawDatum NormalizedData

Code map

A brief look at important areas of code as they happen to exist now.

Static configuration

share/schema/ describes the “normalized” metadata schema/format that all
metadata records are converted into when ingested.

share/sources/ describes a starting set of metadata sources that the system
could harvest metadata from – these will be put in the database and can be
updated or added to over time.

project/settings.py describes system-level settings which can be set by
environment variables (and their default values), as well as settings
which cannot.

share/models/ describes the data layer using the Django [https://www.djangoproject.com/] ORM.

share/subjects.yaml describes the “central taxonomy” of subjects allowed
in Subject.name fields of NormalizedData.

Harvest and ingest

share/harvest/ and share/harvesters/ describe how metadata records
are pulled from other metadata repositories.

share/transform/ and share/transformers/ describe how raw data (possibly
in any format) are transformed to the “normalized” schema.

share/regulate/ describes rules which are applied to every normalized datum,
regardless where or what format it originally come from.

share/metadata_formats/ describes how a normalized datum can be formatted
into any supported output format.

share/tasks/ runs the harvest/ingest pipeline and stores each task’s status
(including debugging info, if errored) as a HarvestJob or IngestJob.

Outward-facing views

share/search/ describes how the search indexes are structured, managed, and
updated when new metadata records are introduced – this provides a view for
discovering items based on whatever search criteria.

share/oaipmh/ describes the OAI-PMH [https://www.openarchives.org/OAI/openarchivesprotocol.html]
view for harvesting metadata from SHARE/Trove in bulk.

api/ describes a mostly REST-ful API that’s useful for inspecting records for
a specific item of interest.

Internals

share/admin/ is a Django-app for administrative access to the SHARE database
and pipeline logs

osf_oauth2_adapter/ is a Django app to support logging in to SHARE via OSF

Testing

tests/ are tests.

Cross-cutting concerns

Immutable metadata

Metadata records at all stages of the pipeline (RawDatum, NormalizedData,
FormattedMetadataRecord) should be considered immutable – any updates
result in a new record being created, not an old record being altered.

Multiple records which describe the same item/object are grouped by a
“source-unique identifier” or “suid” – essentially a two-tuple
(source, identifier) that uniquely and persistently identifies an item in
the source repository. In most outward-facing views, default to showing only
the most recent record for each suid.

Why this?

inspired by this writeup [https://matklad.github.io/2021/02/06/ARCHITECTURE.md.html]
and this example architecture document [https://github.com/rust-analyzer/rust-analyzer/blob/d7c99931d05e3723d878bea5dc26766791fa4e69/docs/dev/architecture]

Change Log

[23.0.6] - 2023-05-11

	make SourceConfig.disabled prevent harvest tasks running

[23.0.5] - 2023-05-11

	downgrade to python 3.10 (for now)

	improve logging

	replace raven (deprecated) with sentry-sdk

	add logging formatter for json with severity (for logging in deployments)

	remove squashed migrations, dead code

[23.0.4] - 2023-05-05

	fix a typo

[23.0.3] - 2023-05-05

	admin interface: allow re-ingesting all data for a source config
(see “ingest” buttons at /admin/share/sourceconfig/)

	address possible cause of some backfill gaps

	fix logging errors

[23.0.0] - 2023-05-03

	upgrade to python 3.11

	upgrade to elasticsearch 8

	add share.search.index_strategy to act as a slippery abstraction layer between search-engine backend and planned friendly search api

	configure two index strategies (and make it easy to add more in the future):

	sharev2_elastic5: the existing/legacy SHAREv2 search index as exists on elasticsearch5 and exposed via /api/v2/search/creativeworks/_search

	sharev2_elastic8: a mirror/replacement for sharev2_elastic5 with all the same _source docs (but possible incompatibilities for the existing pass-thru api)

	add a happy-path index-backfill workflow to the admin interface at /admin/search-indexes

	when changing index-strategy settings/mappings/whatever, the “happy path” is to create, backfill, verify a new copy of the index; then switch which is used for searching, verify again, and finally delete the old index.

	not intended to have the power of a full elasticsearch management interface – just enough visibility to see whether things are going ok and where to start looking if something goes wrong

	for testing, support indexStrategy query param to /api/v2/search/creativeworks/_search, /api/feeds/rss, /api/feeds/atom

	may request a configured strategy (e.g. indexStrategy=sharev2_elastic8) or a specific version of an index within a strategy (e.g. indexStrategy=sharev2_elastic8__bcaa90e8fa8a772580040a8edbedb5f727202d1fca20866948bc0eb0e935e51f)

	add FeatureFlag model, use it to switch default search strategy (name="elastic_eight_default")

[22.0.1] - 2022-08-29

	add suid value to sharev2_elastic index

[22.0.0] - 2022-08-29

	easy additive elastic mapping changes

	add osf_related_resource_types field

	dockerfile updates

[21.3.1] - 2021-07-28

	update raven

[21.3.0] - 2021-07-28

	update and consolidate docs

	audit and upgrade all dependencies

	switch to github actions for tests/ci

[21.2.2] - 2021-05-25

	fix: feeds should not break on null date_published

[21.2.1] - 2021-05-25

	fix: oai_dc formatter breaks on deletions

[21.2.0] - 2021-05-25

	big rend! remove many things:

	concepts:

	merging data from multiple sources together (aiming instead for a simple,
robust repository of metadata records – let’s talk later/soon about how
we might do merging well)

	models:

	ShareObject and all its descendents

	ShareObjectVersion and all its descendents

	Change

	ChangeSet

	SubjectTaxonomy

	UnusedCeleryProviderTask

	UnusedCeleryTask

	api routes:

	all auto-generated ShareObject routes (e.g. /api/v2/creativeworks/)

	all schema routes (except the root /api/v2/schema/)

	auto-generated schema routes (e.g. /api/v2/schema/disputes/)

	work type hierarchy (/api/v2/schema/creativeworks/hierarchy/)

	/api/v2/graph/

	admin features/improvements

	add FormattedMetadataRecord admin

	when investigating a problem, start by finding the suid and navigate
relationships from there

	add action to delete all FormattedMetadataRecords for some chosen suid(s)
(good for spam control)

[21.1.4] - 2021-05-17

	fix a 500 error at /api/v2/

	fix sending useful debugging info to sentry

[21.1.3] - 2021-05-05

	make the oai-pmh feed respect switch-flipping

[21.1.2] - 2021-05-05

	give an accurate date_created in sharev2_elastic formatter

	fix admin bug – don’t hide the search box

	add django-debug-toolbar to dev dependencies

[21.1.1] - 2021-05-04

	tidy up some admin inefficiencies

[21.1.0] - 2021-04-21

	expose a few models in read-only json:api, so the frontend can be useful given a suid

	/api/v2/formattedmetadatarecords/

	/api/v2/sourceconfigs/

	/api/v2/suids/

	add new atom/rss feeds that get results from the new backcompat index

	/api/v2/feeds/atom/

	/api/v2/feeds/rss/

	(old feeds now deprecated, will be gone with ShareObject)

[21.0.8] - 2021-04-01

	add --pls-reingest arg to format_metadata_records command

[21.0.7] - 2021-04-01

	fix: facility != funder (in gov.clinicaltrials transformer)

[21.0.6] - 2021-04-01

	remove feature: oai_dc formatter no longer puts first author last

	add utility: share.util.names.get_related_agent_name for consistently
getting an agent name from an “agent-work relation” node

	if missing both cited_as and name (true of some old, unregulated
production data), reluctantly apply some cultural assumptions and build a
name from parts (given_name, additional_name, family_name, suffix)

[21.0.5] - 2021-03-12

	bugfix: in share.util.graph, handle merging nodes with dictionary values

	bugfix: when formatting oai_dc, strip characters illegal in XML

	when regulating, discard gravatars as agent identifiers

[21.0.4] - 2021-03-11

	bugfix: deduping subjects in custom taxonomies

[21.0.3] - 2021-03-10

	fix up populate_osf_suids with more useful messaging

	improve “central node” guessing to handle old osf data on prod

[21.0.2] - 2021-03-09

	speed up populate_osf_suids – exclude NormalizedData with null raw,
since they’ll be ignored anyway

[21.0.1] - 2021-03-09

	fix populate_osf_suids script to handle fun situations

[21.0.0] - 2021-03-09

	new model: FormattedMetadataRecord

	new sharectl commands:

	sharectl search purge

	sharectl search setup <index_name>

	sharectl search setup --initial

	sharectl search set_primary <index_name>

	sharectl search reindex_all_suids <index_name>

	new management commands:

	format_metadata_records

	populate_osf_suids

	new doc: README-docker-quickstart.md – the easy way to get started

	define the “share schema” statically (in share.schema)

	stop inferring everything from the ShareObject models

	add a parallel ingestion path, preparing for a future without ShareObject

	use only the most recent NormalizedData for each suid (no merging)

	allow explicitly stating the suid when pushing a NormalizedData

	if not specified, try looking for an OSF guid

	build a FormattedMetadataRecord for each metadata format

	currently two metadata formatters (and room for more):

	sharev2_elastic: for a back-compatible elasticsearch index – builds
a document just like share.search.fetchers.CreativeWorkFetcher, but
from a NormalizedData instead of all the ShareObject tables

	oai_dc: dublin core XML, for the OAI-PMH feed

	indexer daemon overhaul

	assorted cleanup; dead/useless code removal

	add ElasticManager to encapsulate all requests sent to elasticsearch

	add IndexSetup concept to describe how to get/build documents for an
index and what messages to send to that index’s daemon

	currently two index setups:

	share_classic: index by AbstractCreativeWork id, using existing
share.search.fetchers logic

	postrend_backcompat: index by SourceUniqueIdentifier id, using
the sharev2_elastic FormattedMetadataRecords

	add a parallel OAI-PMH that uses FormattedMetadataRecord with oai_dc

	remains dormant for the moment – enable with pls_trove query param

	NOTE: when we switch over, OAI-PMH datestamps will all be new and recent

	admin updates:

	search IngestJob by suid value

[20.2.0] - 2020-09-03

	Add a decorator for marking views deprecated

	Mark some views deprecated

	Sources added via API default to canonical

[20.1.0] - 2020-06-16

	Automatically schedule ingest tasks after harvesting

	Schedule ingest tasks in admin reenqueue action

	Pin faker to 4.0.3

	Update .travis.yml

	Fix bug in io.osf.registrations transformer

[20.0.4] - 2020-01-13

	Ensure order in oai-pmh

[20.0.3] - 2020-01-09

	Exclude frankenworks from oai-pmh

[20.0.2] - 2020-01-06

	Reduce oai-pmh page size

[20.0.1] - 2020-01-03

	Pin graphql-relay to a compatible version

[20.0.0] - 2020-01-03

	Dockerfile fixes & improvements

	Optimize oai-pmh endpoint to avoid timeouts

	Add reindex_works shell util

[19.0.6] - 2019-12-06

	Pin python-dateutil to a version that doesn’t break tests (2.8.0)

	Temporarily (i hope) skip tests broken by 19.0.5

[19.0.5] - 2019-12-06

	Temporary fix to avoid slow IngestJob queries

[19.0.4] - 2019-02-25

	Possibly fix a rare forceingest error

[19.0.3] - 2019-01-04

	Skip indexing works with too many agent relations

[19.0.2] - 2019-01-03

	Make the indexer more configurable by environment variables

[19.0.1] - 2019-01-02

	Fix indexer deadlock

[19.0.0] - 2019-01-02

	Allow turning off ingestion (but not harvest) for non-canonical sources

	Ingestion perf improvements (faster attr access in MutableGraph)

	Handle indexer errors better

[18.0.6] - 2018-12-13

	Ingestion perf improvements

[18.0.5] - 2018-10-30

	Update requests dependency

[18.0.4] - 2018-10-25

	Make it easier to reingest all OSF data

[18.0.3] - 2018-10-24

	Fix worker out of memory errors

[18.0.2] - 2018-10-23

	Update nameparser dependency

[18.0.1] - 2018-10-23

	Add datacite oai-1.1 schema namespace

	Fix common datacite transform errors

[18.0.0] - 2018-10-23

	Update django to 1.11.16

	Clean up disambiguation logic to make extending it less painful

	Extend disambiguation to match contributors with different name formats

	Rename fixpreprintdisambiguations command to forceingest

	Handle more complex merges

[2.16.11] - 2018-08-16

	Improve error message for transformer errors

	Fix OSF registration transformer

[2.16.10] - 2018-07-30

	Update NSF harvester to look farther into the past

	Fix a bug in the OSF project harvester

	Fix –osf-only flag in fix_datacite command

[2.16.9] - 2018-06-21

	When a job is marked “skipped”, not even superfluous will re-run it

[2.16.8] - 2018-06-14

	All retried jobs should be marked “rescheduled”

[2.16.7] - 2018-06-14

	Harvest jobs that are retried when the same source is already being
harvested should be marked “rescheduled” rather than “failed”

[2.16.6] - 2018-06-14

	Handle OSF harvest errors gracefully

[2.16.5] - 2018-06-04

	Pin kombu to 4.1.0

[2.16.4] - 2018-06-04

	Harvest all set specs from CSIC

	Allow sorting Atom feed by date_created and date_published

	Don’t create unnecessary source configs for each new source

	Update pytest-django dependency to avoid version conflict

[2.16.3] - 2018-06-04

	Fix bug in indexer daemon, stop all threads when one dies

[2.16.2] - 2018-04-30

	Fix typo in sharectl ingest that prevented bulk reingestion

[2.16.1] - 2018-04-30

	Fix date range filtering in com.figshare.v2 harvester

[2.16.0] - 2018-04-26

	Bulk reingestion with IngestScheduler.bulk_reingest() and sharectl ingest

	Admin interface updates

	More stable and reliable indexer daemon

	“Urgent” queues for ingestion and indexing, allowing pushed data to jump
ahead of harvested data

	Various source config updates

[2.15.6] - 2018-04-04

	Fix PeerJ transformer error

[2.15.5] - 2018-03-15

	Prevent infinite task loop for certain types of errors

[2.15.4] - 2018-03-15

	Update raw data janitor to skip over datums from disabled/deleted sources

[2.15.3] - 2018-03-15

	Fix bug in fixpreprintdisambiguations command

[2.15.2] - 2018-03-12

	Fix a broken test

[2.15.1] - 2018-03-12

	Fix some time-sensitive tests

[2.15.0] - 2018-03-05

Ingest architecture

	Add IngestJob, used to keep track of a RawDatum’s ingestion status

	Exposed in API at /api/v2/ingestjobs/

	In the response to pushed data, include a link to the IngestJob

	Rename HarvestLog to HarvestJob

	Combine transform and disambiguate tasks into ingest task

	Catch all errors caused by bad input data, store them on the IngestJob

	Add Regulator, a place to put logic/transforms/validation that should
run on all data, regardless of source

	Fix: Prevent indexer daemon threads from exiting when elasticsearch times out

Existing sources

	Map work relation types in MODS transformer

	Update edu.utah source config to include more approved sets

	Update edu.umassmed source config to use HTTPS

[2.14.11] - 2018-02-26

	Update pendulum dependency to avoid infinite janitor loop

[2.14.10] - 2018-02-26

	Fix elasticsearch_janitor task

	Expect (and give) str arguments, avoiding error

	Use the indexer daemon by default

[2.14.9] - 2018-02-22

	Speed up update_elasticsearch task:

	Don’t count the works just for a log message

	Use the indexer daemon by default, instead of index_model tasks

	Only run one update_elasticsearch task at a time

[2.14.8] - 2018-02-22

	Add –delete-related and –superfluous flags to enforce_set_lists

	Improve script output by including ids in ShareObject.repr

[2.14.7] - 2018-02-18

	Devops updates for new environment

[2.14.6] - 2018-02-12

	Actually speed up OAI feed

[2.14.5] - 2018-02-12

	Speed up OAI feed when filtering by set

	Delete merged works with no identifiers in fixpreprintdisambiguations

[2.14.4] - 2018-02-08

	Allow omitting arXiv from fix_datacite script

[2.14.3] - 2018-02-05

	Add parameters to fix_datacite script

[2.14.2] - 2018-02-01

Changed

	Use normalized agent name in Atom feed, instead of cited_as

	Update psycopg dependency

[2.14.1] - 2018-01-18

Added

	Type map for Columbia Academic Commons (edu.columbia)

	Type map for University of Cambridge (uk.cambridge)

[2.14.0] - 2018-01-10

Added

	Allow reading/writing Source.canonical at /api/v2/sources/

	Include <author> in atom feed at /api/v2/atom/

	ScholarsArchive@OSU source config for their new API

Changed

	Prevent OSF harvester from being throttled

	Update NSFAwards harvester/transformer to include more fields

[2.13.1] - 2018-01-04

Fixed

	Use request context to build URLs in the API instead of SHARE_API_URL setting

	Stop displaying localhost:8000 links

Added

	Add --from parameter to fixpreprintdisambiguations management command

[2.13.0] - 2017-12-18

Added

	Support for set blacklists for sources that follow OAI-PMH protocol

	enforce_set_lists command to enforce set blacklist and whitelist

	Set whitelist for UA Campus Repository

	Support for encrypted json field and start using it in SourceConfig model

	Enable Coveralls

	Include work lineage (based on IsPartOf relations) in the search index payload

	Add self links to objects returned by the API

Changed

	Collect metadata in MODS format from UA Campus Repository

	Update columbia.edu harvester source config (disabled set to false)

	Improve creating Sources at /api/v2/sources/

	Use POST to create, PATCH to update

	Respond with sensical status codes (409 on name conflict, etc.)

Fixed

	Backfill CHANGELOG.md to include 2.10.0 and 2.11.0

	Correctly encode &, <, > characters in the Atom feed

	Avoid DB connection leak by disabling persistent connections

[2.12.0] - 2017-09-14

Added

	editsubjects management command to modify share/subjects.yaml

Changed

	Replace share/models/subjects.json with share/subjects.yaml

	Update central subjects taxonomy to match Bepress’ 2017-07 update

[2.11.0] - 2017-08-27

Added

	Symbiota as a source

	AEA as a source

Changed

	Used django-include for a faster OAI-PMH endpoint

	Updated regex for compatibility with Python 3.6

[2.10.0] - 2017-08-03

Added

	University of Arizona as a source

	NAU Open Knowledge as a source

	Started collecting analytics on source APIs (response time, etc.)

	Support for custom taxonomies

[2.9.0] - 2017-06-15

Added

	sharectl command line tool

	Profiling middleware for local development

	Janitor tasks to find and process unprocessed data

	Timestamp field to RawData

	Mendeley Harvester!

	Started to use deprecation warning

	Timeouts for harvests

Removed

	The concept of “Bots”

	A lot of dead code

	A GPL licenced library

Changed

	Upgraded to Celery 4.0

	Deleted works now return 403s from the API

	Deleted works are now excluded from the API

	Corrected to date fields used to audit the Elasticsearch index

	Strongly defined the Harvester interface

	Harvests are now scheduled in a more friendly manner

	Updated the configurations for many OAI sources

Fixed

	HarvestLogs no longer get stuck in progress

	Text parsing transformer utilties

	MODS transformer looks at the location field in addition to other fields for a work identifier

[2.8.0] - 2017-05-12

Added

	Elasticsearch Janitor task to keep Postgres and ES in sync

	Concurrently added indexes

	Admin updates to allow quicker fixing of broken data

	More test coverage

Removed

	Elasticsearch’s scroll API explicitly disabled

Changed

	Upgraded to Django 1.11

	Elasticsearch now pulls last_modified from itself rather than Postgres

Fixed

	API pagination no longer times out on large collections

	Timestamps are now included in the ATOM feed

[2.7.0] - 2017-05-04

Added

	OAI endpoint

	Sources

	OpenBU

Changed

	Updated documentation

[2.6.0] - 2017-03-28

Added

	Sources

	A table for managing SHARE data sources

	Replaces the apps in the providers folder

	SourceConfigs

	A table for managing different methods of acquire data from given source

	Replaces nested apps/app labels

	HarvestLogs

	First class support for managing harvesting/back harvesting

	Source Unique Identifiers

	First class representation of what was RawData.provider_doc_id

	The Django admin now supports starting harvesters over long periods of time

	Support for the MODs OAI PHM prefix

Removed

	Provider Django applications have been removed

	Source specific fields have been removed from ShareUser

Changed

	Harvesters have been relocated to share/harvesters/

	Various renaming/vocabulary changes

	RawData -> RawDatum

	Favicon -> Icon

	Provider -> Source

	Provider App -> SourceConfig

	Normalizer -> Transformer

	Updates to the getting started guide

	Squashed migrations to speed up local development

	Harvesters are now expected to return utf-8 strings

	Sources are no longer tied to the ShareUser model

[2.5.0] - 2017-03-15

Added

	Title now has an “exact” multi-field in elasticsearch

	A robot that archives old succeeded celery jobs

	New Harvesters

	Scholarly Commons @ JMU

Fixed

	Compensate for potential race conditions with the push API

[2.4.0] - 2017-02-10

Added

	New Harvesters

	Research Registry Harvester

	SSOAR

	Status API endpoint

Changed

	Updated set_specs for University of Kansas

	ClinicalTrials.gov now output registrations

	Source icons are now stored in the database

Fixed

	Removed “Notify” from the page title in the browsable API

[2.3.0] - 2017-02-02

Added

	Support for OSF Registries

	New Harvesters

	University of Utah

Changed

	Updated the API

	Improved Elasticsearch mappings

	Updated NIH and NSFAwards

	Affiliations are now gathered

	Non-Unique URLs are no longer collected

	Lots of under the hood changes to make dev’s lives easier

[2.1.0] - 2016-12-16

Added

	New Harvesters

	es.csic

	edu.purdue.epubs

	Site status banners

	Retraction harvesting

	A little bit of documentation

Changed

	OAuth login failure pages look nice now

	Cascade deletes are now implemented as database cascades

[2.0.0] - 2016-12-02

Added

	New Harvesters

	edu.cornell

	edu.richmond

	edu.scholarworks_montana

	edu.ucf

	edu.umd

	edu.utahstate

	org.seafdec

	Relations between creative works

	Updated harvesters

	Figshare v2 API

	PeerJ XML API

	Pubmed PMC prefix

	Datacite 4.0

	BePress Taxonomy for subjects

	Travis now uses postgres 9.5

	Comprehensive test suite for normalization and disambiguation

Changed

	Updated data model

	More expressive relations between people/organizations and works

	Type hierarchies

	Creative works: Publication, Preprint, DataSet, Patent, Thesis, Software, etc.

	Agents: Person, Organization, Institution, Consortium

	More aggressive and intelligent data parsing

	Stricter validation of incoming data

	Prune duplicate objects from submitted changesets

	Various bug fixes

	Formalized disambiguation methods

	App bootstrap time improved by 4x

	Better elasticsearch mappings

	URI may now be searched/matched directly

	Prettier table names

[1.0.0] - 2016-10-06

Added

	Backport of the V1 push API

	New and improved source registration form

	JSON schema endpoint

	New sources

	College of William and Mary

	University of Wisconsin

CONTRIBUTING

TODO: how do we want to guide community contributors?

For now, if you’re interested in contributing to SHARE/Trove, feel free to
open an issue on github [https://github.com/CenterForOpenScience/SHARE/issues]
and start a conversation.

SHARE/Trove

SHARE is creating a free, open dataset of research (meta)data.

Note: SHARE’s open API tools and services help bring together scholarship distributed across research ecosystems for the purpose of greater discoverability. However, SHARE does not guarantee a complete aggregation of searched outputs. For this reason, SHARE results should not be used for methodological analyses, such as systematic reviews.

[image: _images/badge.svg]Coverage Status [https://coveralls.io/github/CenterForOpenScience/SHARE?branch=develop]

Documentation

What is this?

see WHAT-IS-THIS-EVEN.md

How can I use it?

see how-to/use-the-api.md

How do I navigate this codebase?

see ARCHITECTURE.md

How do I run a copy locally?

see how-to/run-locally.md

Running Tests

Unit test suite

py.test

BDD Suite

behave

“What is this, even?”

Imagine a vast, public library full of the outputs and results of some scientific
research – shelves full of articles, preprints, datasets, data analysis plans,
and so on.

You can think of SHARE/Trove as that library’s card catalog.

“…What is a card catalog?”

A card catalog [https://en.wikipedia.org/wiki/Card_catalog] is that weird, cool cabinet you might see at the front of a
library with a bunch of tiny drawers full of index cards – each index card
contains information about some item on the library shelves.

The card catalog is where you go when you want to:

	locate a specific item in the library

	discover items related to a specific topic, author, or other keywords

	make a new item easily discoverable by others

“OK but what ‘library’ is this?”

As of July 2021, SHARE/Trove contains metadata on over 4.5 million items originating from:

	OSF [https://osf.io] (including OSF-hosted Registries and Preprint Providers)

	REPEC [http://repec.org]

	arXiv [https://arxiv.org]

	ClinicalTrials.gov [https://clinicaltrials.gov]

	…and more!

Updates from OSF are reflected within seconds, while updates from third-party sources are
harvested once daily.

“How can I use it?”

You can search the full SHARE/Trove catalog at
share.osf.io/discover [https://share.osf.io/discover].

Other search pages can also be built on SHARE/Trove, showing only a specific
collection of items. For example, OSF Preprints [https://osf.io/preprints/discover]
and OSF Registries [https://osf.io/registries/discover] show only registrations
and preprints, respectively, which are hosted on OSF infrastructure.

To learn about using the API (instead of a user interface), see
how-to/use-the-api.md

Harvesters and Transformers

A harvester gathers raw data from a source using their API.

A transformer takes the raw data gathered by a harvester and maps the fields to the defined SHARE models.

Writing a Harvester and Transformer

See the transformers and harvesters located in the share/transformers/ and share/harvesters/ directories for more examples of syntax and best practices.

Adding a new source

	Determine whether the source has an API to access their metadata

	
	Create a source folder at share/sources/{source name}

	
	Source names are typically the reversed domain name of the source, e.g. a source at http://example.com would have the name com.example

	
	Create a file named source.yaml in the source folder

	
	See Writing a source.yaml file

	
	Determine whether the source makes their data available using the OAI-PMH [http://www.openarchives.org/OAI/openarchivesprotocol.html] protocol

	
	If the source is OAI see Best practices for OAI sources

	
	Writing the harvester

	
	See Best practices for writing a Harvester

	
	Writing the transformer

	
	See Best practices for writing a Transformer

	
	Adding a sources’s icon

	
	visit www.domain.com/favicon.ico and download the favicon.ico file

	place the favicon as icon.ico in the source folder

	
	Load the source

	
	To make the source available in your local SHARE, run ./manage.py loadsources in the terminal

Writing a source.yaml file

The source.yaml file contains information about the source itself, and one or more configs that describe how to harvest and transform data from that source.

name: com.example
long_title: Example SHARE Source for Examples
home_page: http://example.com/
user: sources.com.example
configs:
- label: com.example.oai
 base_url: http://example.com/oai/
 harvester: oai
 harvester_kwargs:
 metadata_prefix: oai_datacite
 rate_limit_allowance: 5
 rate_limit_period: 1
 transformer: org.datacite
 transformer_kwargs: {}

See the whitepaper [https://github.com/CenterForOpenScience/SHARE/blob/develop/whitepapers/Tables.md] for Source and SourceConfig tables for the available fields.

Best practices for OAI sources

Sources that use OAI-PMH [http://www.openarchives.org/OAI/openarchivesprotocol.html] make it easy to harvest their metadata.

	Set harvester: oai in the source config.

	
	Choose a metadata format to harvest.

	
	Use the ListMetadataFormats OAI verb to see what formats the source supports.

	Every OAI source supports oai_dc, but they usually also support at least one other format that has richer, more structured data, like oai_datacite or mods.

	Choose the format that seems to have the most useful data for SHARE, especially if a transformer for that format already exists.

	Choose oai_dc only as a last resort.

	Add metadata_prefix: {prefix} to the harvester_kwargs in the source config.

	
	If necessary, write a transformer for the chosen format.

	
	See Best practices for writing a Transformer

Best practices for writing a non-OAI Harvester

	The harvester should be defined in share/harvesters/{harvester name}.py.

	
	When writing the harvester:

	
	Inherit from share.harvest.BaseHarvester

	Add the version of the harvester VERSION = 1

	Implement do_harvest(...) (and possibly additional helper functions) to make requests to the source and to yield the harvested records.

	
	Check to see if the data returned by the source is paginated.

	
	There will often be a resumption token to get the next page of results.

	
	Check to see if the source’s API accepts a date range

	
	If the API does not then, if possible, check the date on each record returned and stop harvesting if the date on the record is older than the specified start date.

	
	Add the harvester to entry_points in setup.py

	
	e.g. 'com.example = share.harvesters.com_example:ExampleHarvester',

	run python setup.py develop to make the harvester available in your local SHARE

	Test by running the harvester

Best practices for writing a non-OAI Transformer

	The transformer should be defined in share/transformers/{transformer name}.py.

	
	When writing the transformer:

	
	Determine what information from the source record should be stored as part of the CreativeWork model (i.e. if the record clearly defines a title, description, contributors, etc.).

	
	Use the chain transformer tools as necessary to correctly parse the raw data.

	
	Alternatively, implement share.transform.BaseTransformer to create a transformer from scratch.

	
	Utilize the Extra class

	
	Raw data that does not fit into a defined share model should be stored here.

	Raw data that is otherwise altered in the transformer should also be stored here to ensure data integrity.

	
	Add the transformer to entry_points in setup.py

	
	e.g. 'com.example = share.transformer.com_example:ExampleTransformer',

	run python setup.py develop to make the transformer available in your local SHARE

	Test by running the transformer against raw data you have harvested.

SHARE Chain Transformer

SHARE provides a set of tools for writing transformers, based on the idea of constructing chains for each field that lead from the root of the raw document to the data for that field. To write a chain transformer, add from share.transform.chain import links at the top of the file and make the transformer inherit share.transform.chain.ChainTransformer.

from share.transform.chain import ctx, links, ChainTransformer, Parser

class CreativeWork(Parser):
 title = ctx.title

class ExampleTransformer(ChainTransformer):
 VERSION = 1
 root_parser = CreativeWork

	
	Concat

	To combine list or singular elements into a flat list:

links.Concat(<string_or_list>, <string_or_list>)

	
	Delegate

	To specify which class to use:

links.Delegate(<class_name>)

	
	Join

	To combine list elements into a single string:

links.Join(<list>, joiner=' ')

Elements are separated with the joiner.
By default joiner is a newline.

	
	Map

	To designate the class used for each instance of a value found:

links.Map(links.Delegate(<class_name>), <chain>)

See the share models for what uses a through table (anything that sets through=).
Uses the Delegate tool.

	
	Maybe

	To transform data that is not consistently available:

links.Maybe(<chain>, '<item_that_might_not_exist>')

Indexing further if the path exists:

links.Maybe(<chain>, '<item_that_might_not_exist>')['<item_that_will_exist_if_maybe_passes>']

Nesting Maybe:

links.Maybe(links.Maybe(<chain>, '<item_that_might_not_exist>')['<item_that_will_exist_if_maybe_passes>'], '<item_that_might_not_exist>')

To avoid excessive nesting use the Try link

	
	OneOf

	To specify two possible paths for a single value:

links.OneOf(<chain_option_1>, <chain_option_2>)

	
	ParseDate

	To determine a date from a string:

links.ParseDate(<date_string>)

	
	ParseLanguage

	To determine the ISO language code (i.e. ‘ENG’) from a string (i.e. ‘English’):

links.ParseLanguage(<language_string>)

Uses pycountry [https://pypi.python.org/pypi/pycountry] package.

	
	ParseName

	To determine the parts of a name (i.e. first name) out of a string:

links.ParseName(<name_string>).first

options:

first
last
middle
suffix
title
nickname

Uses nameparser [https://pypi.python.org/pypi/nameparser] package.

	
	RunPython

	To run a defined python function:

links.RunPython('<function_name>', <chain>, *args, **kwargs)

	
	Static

	To define a static field:

links.Static(<static_value>)

	
	Subjects

	To map a subject to the PLOS taxonomy based on defined mappings:

links.Subjects(<subject_string>)

	
	Try

	To transform data that is not consistently available and may throw an exception:

links.Try(<chain>)

	
	XPath

	To access data using xpath:

links.XPath(<chain>, "<xpath_string>")

SHARE Quickstart or: How I Learned to Stop Worrying and Love the Dock

this guide guides you through setting up SHARE locally using Docker
for development and manual testing.

this guide does NOT guide you to anything appropriate for the open Internet.

pre-requisites

	git [https://git-scm.com/]

	docker [https://www.docker.com/] (including docker-compose)

getting a local SHARE running

0. git the code

git clone https://github.com/CenterForOpenScience/SHARE.git share

the rest of this guide assumes your working directory is the SHARE repository root
(where the docker-compose.yml is):

cd ./share

1. download several bits

download docker images (depending on your internet connection, this may take a beat):

docker-compose pull

install python dependencies (in a shared docker volume):

docker-compose up requirements

2. structured data

there are two services that store more-or-less persistent data: postgres and elastic8

let’s start them from the host machine:

docker-compose up -d postgres elastic8

since we’re not installing anything more on the host machine, it’ll be useful to open
a shell running within SHARE’s environment in docker:

docker-compose run --rm --no-deps worker bash

this will open a bash prompt within a temporary worker container – from here we can
use SHARE’s python environment, including django’s manage.py and SHARE’s own sharectl
utility (defined in share/bin/)

from the docker shell, use django’s migrate command to set up tables in postgres:

python manage.py migrate

and use sharectl to set up indexes in elasticsearch:

sharectl search setup --initial

3. start ‘em up

all other services can now be started from the host machine (upping worker ups all)

docker-compose up -d worker

handy commands

start a shell in a container

there are several ways to open a shell with SHARE’s python environment (including
django’s manage.py and SHARE’s own sharectl utility, defined in share/bin/)

if worker is already up, can open a shell within that container:

docker-compose exec worker bash

if no services are up, can open a shell within a new, temporary worker container:

docker-compose run --rm --no-deps worker bash

(remove --no-deps if you’d like the other services started automatically)

start a django shell

this should be run inside a container (see previous):

python manage.py shell_plus

admin interface

http://localhost:8003/admin (username: “admin”, password: “password”)

using with local osf.io [https://github.com/CenterForOpenScience/osf.io]

	set up your local osf with docker [https://github.com/CenterForOpenScience/osf.io/blob/HEAD/README-docker-compose], if you haven’t already

	in a SHARE container, run python manage.py add_local_osf_user and copy the access token from the output.

python manage.py add_local_osf_user
added user "my-local-osf" for local osf
access-token: THISISMYACCESSTOKENITISLONGANDINSCRUTABLEANDSECRET

	add settings to your local osf’s website/settings/local.py, including the access token from step 1:

SHARE_ENABLED = True
SHARE_PROVIDER_PREPEND = 'local'
SHARE_URL = 'http://192.168.168.167:8003/'
SHARE_API_TOKEN = 'THISISMYACCESSTOKENITISLONGANDINSCRUTABLEANDSECRET'

(you may need to restart osf services that use these settings)

	use the osf admin interface at http://localhost:8001 to connect osf providers (can skip this step if you’re only interested in osf:Project records)

	at /provider_asset_files/create, add a small icon (PNG or JPEG) with name square_color_no_transparent for the provider(s) you want

	on each provider detail page (e.g. /preprint_provider/<id>/), click the “Setup Share Source” button

TODO: streamline this process – is the icon really necessary?

	make things “public” on your local osf to start populating indexes

TODO: once share.osf.io/oaipmh is reliable, make it easy to init a local deployment by harvesting data from there

troubleshooting

	my containers keep mysteriously dying!

	does docker have enough memory? try giving it more

How to use the API

Harvesting metadata records in bulk

/oaipmh – an implementation of the Open Access Initiative’s Protocol for Metadata Harvesting [https://www.openarchives.org/OAI/openarchivesprotocol.html], an open standard for harvesting metadata
from open repositories. You can use this to list metadata in bulk, or query by a few simple
parameters (date range or source).

Searching metadata records

/api/v2/search/creativeworks/_search – an elasticsearch API endpoint that can be used for
searching metadata records and for compiling summary statistics and analyses of the
completeness of data from the various sources.

You can search by sending a GET request with the query parameter q, or a POST request
with a body that conforms to the elasticsearch query DSL [https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html].

For example, the following two queries are equivalent:

GET https://share.osf.io/api/v2/search/creativeworks/_search?q=badges

POST https://share.osf.io/api/v2/search/creativeworks/_search
{
 "query": {
 "query_string" : {
 "query" : "badges"
 }
 }
}

You can also use the SHARE Discover page [https://share.osf.io/discover] to generate query DSL.
Use the filters in the sidebar to construct a query, then click “View query body” to see the query in JSON form.

Fields Indexed by Elasticsearch

The search endpoint has the following metadata fields available:

'title'
'description'
'type'
'date'
'date_created'
'date_modified
'date_updated'
'date_published'
'tags'
'subjects'
'sources'
'language'
'contributors'
'funders'
'publishers'

Date fields

There are five date fields, and each has a different meaning. Two are given to SHARE by the data source:

date_published
When the work was first published, issued, or made publicly available in any form.
Not all sources provide this, so some works in SHARE have no date_published.
date_updated
When the work was last updated by the source. For example, an OAI-PMH record’s <datestamp>.
Most works have a date_updated, but some sources do not provide this.

Three date fields are populated by SHARE itself:

date_created
When SHARE first ingested the work and added it to the SHARE dataset. Every work has a date_created.
date_modified
When SHARE last ingested the work and modified the work’s record in the SHARE dataset. Every work
has a date_modified.
date
Because many works may not have date_published or date_updated values, sorting and filtering works
by date can be confusing. The date field is intended to help. It contains the most useful available
date. If the work has a date_published, date contains the value of date_published. If the work
has no date_published but does have date_updated, date is set to date_updated. If the work
has neither date_published nor date_updated, date is set to date_created.

Pushing metadata records

NOTE: currently used only by other COS projects, not yet for public use

/api/v2/normalizeddata – how to push data into SHARE/Trove (instead of waiting to be harvested)

POST /api/v2/normalizeddata HTTP/1.1
Host: share.osf.io
Authorization: Bearer ACCESS_TOKEN
Content-Type: application/vnd.api+json

{
 "data": {
 "type": "NormalizedData",
 "attributes": {
 "data": {
 "central_node_id": '...',
 "@graph": [/* see below */]
 }
 }
 }
}

NormalizedData format

The normalized metadata format used internally by SHARE/Trove is a subset of
JSON-LD graph [https://www.w3.org/TR/json-ld/#named-graphs].
Each graph node must contain @id and @type, plus other key/value pairs
according to the
“SHARE schema” [https://github.com/CenterForOpenScience/SHARE/blob/develop/share/schema/schema-spec.yaml]

In this case, @id will always be a “blank” identifier, which begins with '_:'
and is used only to define relationships between nodes in the graph – nodes
may reference each other with @id/@type pairs –
e.g. {'@id': '...', '@type': '...'}

Example serialization: The following SHARE-style JSON-LD document represents a
preprint with one “creator” and one identifier – the graph contains nodes for
the preprint, person, and identifier, plus another node representing the
“creator” relationship between the preprint and person:

{
 'central_node_id': '_:foo',
 '@graph': [
 {
 '@id': '_:foo',
 '@type': 'preprint',
 'title': 'This is a preprint!',
 },
 {
 '@id': '_:bar',
 '@type': 'workidentifier',
 'uri': 'https://osf.io/foobar/',
 'creative_work': {'@id': '_:foo', '@type': 'preprint'}
 },
 {
 '@id': '_:baz',
 '@type': 'person',
 'name': 'Magpie Jones'
 },
 {
 '@id': '_:qux',
 '@type': 'creator',
 'creative_work': {'@id': '_:foo', '@type': 'preprint'},
 'agent': {'@id': '_:baz', '@type': 'person'}
 }
]
}

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

